Войти
Портал об устройстве канализации и водосточных труб
  • Побочные эффекты от употребления включают
  • Самый большой бодибилдер — Грег Ковач: биография, интересные факты и причина смерти Грег Ковач в профессиональных рейтингах
  • Перуанская мака — что это такое
  • Февральская революция: кратко
  • Вся правда о шоколадных десертах — как правильно выбрать какао Чем заменить шоколад в выпечке
  • Как закрывать компот на зиму?
  • Амперметр на пик контроллере схема. Простой встраиваемый ампервольтметр на PIC16F676

    Амперметр на пик контроллере схема. Простой встраиваемый ампервольтметр на PIC16F676

    Схема на рис.1 - развитие предыдущей идеи конструкции по использованию аналогового входа в микроконтроллере, не имеющего встроенного АЦП, а так же используются технические приемы из другой идеи конструкции по управлению семисегментным светодиодным индикатором без внешних ключевых транзисторов. Данная схема имеет последовательный канал, и нужна только витая пара для передачи измеренных значений на персональный компьютер.

    Последовательный канал был протестирован с использованием программы компании Microsoft Hyper Terminal сконфигурированной параметрами 115,200 бод; 8 бит, четность, 1 стоп-бит; без аппаратного контроля.

    Коротко, программа управляет одним светодиодным семисегментным индикатором за раз по линиям RA0 и RB7. Установка выхода RA0 в единицу и использование RB7, как входа активизирует индикатор с общим анодом DS3. Установка выхода RA0 в ноль и использование RB7 как входа, активизирует индикатор с общим катодом DS2. Использование RA0 как входа и установка выхода RB7 в единицу активизирует индикатор с общим анодом DS1, а при использовании RA0 как вход и установке выхода RB7 в ноль активизирует индикатор с общим катодом DS0. После успешной активизации одного индикатора, только одна из линий RB0 … RB6, конфигурируется как выход для управления одним светодиодным сегментом. Эта схема больше не имеет ограничения на питающее напряжение VDD - 3В или ниже - так как светодиоды включены встречно-параллельно, таким образом, прямое падение напряжения на одном светодиоде ограничивает обратное напряжение на другом. Использование красных светодиодов требует 1,6 В.

    Рис.2 иллюстрирует новые аспекты идеи конструкции. Q1, R5, и R6 работают как эквивалентный переменный резистор, RX, который заряжает конденсатор C3. Вместо подключения RX к земле, просто подключите его к одной линии ввода-вывода - например RB0 - микроконтроллера. Если RB0 включен как выход в нулевом состоянии, значит первый аналоговый канал активизирован и измерительная подпрограмма подсчитывает импульсы заряда до величины 66% от VDD; затем, по таблице полученная величина задержки переводится в величину милливольт из трех цифр. Для увеличения количества аналоговых входов, вы можете подключить до семи цепей переменного резистора в параллель - таким образом, что каждый подключен между C3 и одной линией ввода-вывода, RB1 … RB7. Важно, что линии ввода-вывода подключены к индикаторам и так же активируют или отключают аналоговые каналы. Когда один аналоговый канал активизирован линией ввода-вывода выходом в низком состоянии, другие линии имеют высокое сопротивление и работают как входы, что отключает все остальные каналы. Соответственно, индикаторы отключены.

    В схему на рис.1 так же добавлен простейший последовательный канал без добавления внешних компонентов. Если вы подключите две линии ввода-вывода, RA1 и RA2, сконфигурированные как выходы к RXD (Выв 2) и GND (Выв 5) разъема RS 232, вы сможете создавать, с помощью программы, положительное и отрицательное напряжение относительно земли порта RS 232 в ПК. Когда RA1 в единице, а RA2 в ноле, RXD имеет положительный потенциал 5 В относительно земли порта RS 232 в ПК. Когда RA1 в ноле, а RA2 в единице, RXD имеет отрицательный потенциал -5 В относительно земли порта RS 232 в ПК.

    Реализация вольтметра от Владимира

    Добавлены ключи на аноды индикатора, что повысило яркость дисплея, и позволяет использовать более мощные дисплеи.

    Две печатки под DIP14 и SO14

    В схеме применены транзисторы BC847 (КТ3102).

    Во время обновления основной статьи вольтметра в схеме и печатках от Владимира был заменён делитель напряжения. Прошивки к вольтметру лежат в основной статье .

    Реализация сетевого вольтметра от Wali Marat

    Печатка отличается от схемы заменой резисторов R2 и R3 на один подстроечный 4,7к и отсутствием стабилитрона VD1.

    Также была прислана модифицированная схема сетевого вольтметра, она отличается более качественной схемой стабилизации напряжения питания вольтметра.

    Фото сетевого вольтметра

    Реализация вольтметра/амперметра от Wali Marat

    Во все схемы от Wali Marat был добавлен стабилитрон VD1 на 5,1В(обозначен зелёным цветом), для защиты входа АЦП микроконтроллера от перенапряжения.

    Представленное здесь устройство пригодится, если у Вас есть блок питания с выходным напряжение 0-10 В. Именно такие пределы измерения "заложены" в схему представленную на рисунке. В ее основе - микроконтроллер Atmega8 (U1) в стандартном корпусе DIP. Он может показаться громоздким, но был выбран из-за широкой популярности, а также по причине того, что программаторы, для данного микроконтроллера очень распространены. Atmega8 используют большинство радиолюбителей и в Интернете можно найти немало схем с этим микроконтроллером. Поэтому, если Вам не понравится данный вольтметр, Atmega8 не останется лежать без дела.

    Цифровой вольтметр на Atmega8. Схема принципиальная.

    Показатели измерения вольтметра будут отображаться на цифровом семисегментном трехзначном индикаторе (DISP1). Дам немного информации по поводу него.

    7-сегментный цифровой LED индикатор - это индикатор, состоящий из семи светодиодов, установленных в форме цифры 8. Зажигая или выключая соответствующие LED-ы (сегменты) можно отображать цифры от нуля до девяти, а так же некоторые буквы. Обычно используется несколько цифровых индикаторов, чтобы создать многозначные цифры - для этого индикаторы снабжены сегментом в виде запятой (точки) - dp. В итоге, у одного индикатора 8 сегментов, хотя называют их по числу цифровых сегментов 7-сегментным.

    Каждый сегмент индикатора представляет собой отдельный светодиод, который может быть включен (светиться) или выключен (не светиться) в зависимости от полярности подаваемого на них напряжения. Индикаторы бывают как с общим катодом, так и с общим анодом. Речь идет об общем соединении всех светодиодов (сегментов). Кроме этого, индикаторы могут содержать несколько цифр, в таком случаем каждая цифра называется разрядом или знаком. Например, трехразрядный (трехзначный) семисегментный индикатор содержит три цифры. Именно такой индикатор и понадобится для этого устройства.


    В конструкции используется индикатор красного свечения GNT-2831BD-11 с общим анодом. Резисторы R1-R8 определяют ток в индикаторе и, следовательно, его яркость. Их сопротивление не должно превышать максимальный выходной ток (40 мА), даже когда все 8 светодиодов горят сразу. В схеме используется несимметричный 10-битный АЦП (аналого-цифровой преобразователь), находящийся в AVR. Диапазон выходного значения составляет 0-999. Когда будет достигнут предел этих значений, появится символ "---".

    На входе вольтметра (in) установлен делитель напряжения из резисторов R9, R10 и R11, обеспечивая диапазон измерения до 10 В с погрешностью 0,01 В. На выводе 23 микроконтроллера U1 делитель формирует напряжение, которое не должно превышать 2,5 В. Входное сопротивление вольтметра близко к 1мОм. Для калибровки вольтметра подайте на его вход точно известное напряжение и, перемещая подстроечный резистор R11, добейтесь на индикаторе таких же показаний.

    Частота обновления вольтметра составляет около 4 Гц. Схема питается от стабилизированного источника напряжением 5 В. Потребляемый ток устройства составляет около 25 мА (большая часть потребления приходится на индикатор). Компоненты C1 и C2 расположите как можно ближе к микроконтроллеру.

    Правильно выставленные биты представлены на рисунке ниже.


    Если Вам необходимы пределы измерения до 100 В, измените значение R10 на 9,1мОм и R11 на 2,2 мОм. Тогда Вы получите желаемый диапазон измерения с погрешностью 0,1 В и входным сопротивлением около 10мОм. В этом случае придется изменить и место точки индикатора, чтобы она отображалась за двумя символами, а не за первым, как на схеме. Для этого вывод 28 микросхемы U1 оставьте свободным, а к общему проводу подключите вывод 27. Теперь вместо символов в виде 0.00 будут отображаться 00.0.

    Прошлым летом по просьбе знакомого разработал схему цифрового вольтметра и амперметра. В соответствии с просьбой данный измерительный прибор должен быть экономичный. Поэтому в качестве индикаторов для вывода информации был выбран однострочный жидкокристаллический дисплей. Вообще этот ампервольтметр предназначался для контроля разрядки автомобильного аккумулятора. А разряжался аккумулятор на двигатель небольшого водяного насоса. Насос качал воду через фильтр и опять возвращал ее по камушкам в небольшой прудик на даче.

    Вообще в подробности этой причуды я не вникал. Не так давно этот вольтметр опять попал ко мне у руки для доработки программы. Все работает как положено, но есть еще одна просьба, чтобы установить светодиод индикации работы микроконтроллера. Дело в том, что однажды, из-за дефекта печатной платы, пропало питание микроконтроллера, естественно функционировать он перестал, а так как ЖК-дисплей имеет свой контроллер, то данные, загруженные в него ранее, напряжение на аккумуляторной батарее и ток, потребляемый насосом, так и остались на экране индикатора. Ранее я не задумывался о таком неприятном инциденте, теперь надо будет это дело учитывать в программе устройств и их схемах. А то будешь любоваться красивыми циферками на экране дисплея, а на самом деле все уже давно сгорело. В общем, батарея разрядилась полностью, что для знакомого, как он сказал, тогда было очень плохо.
    Схема прибора с индикаторным светодиодом показана на рисунке.

    Основой схемы являются микроконтроллер PIC16F676 и индикатор ЖКИ. Так, как все это работает исключительно в теплое время года, то индикатор и контроллер можно приобрести самые дешевые. Операционный усилитель выбран тоже соответствующий – LM358N, дешевый и имеющий диапазон рабочих температур от 0 до +70.
    Для преобразования аналоговых величин (оцифровки) напряжения и тока выбрано стабилизированное напряжение питания микроконтроллера величиной +5В. А это значит, что при десятиразрядной оцифровке аналогового сигнала каждому разряду будет соответствовать – 5В = 5000 мВ = 5000/1024 = 4,8828125 мВ. Эта величина в программе умножается на 2, и получаем — 9,765625мВ на один разряд двоичного кода. А нам надо для корректного вывода информации на экран ЖКИ, чтобы один разряд был равен 10 мВ или 0,01 В. Поэтому в схеме предусмотрены масштабирующие цепи. Для напряжения, это регулируемый делитель, состоящий из резисторов R5 и R7. Для коррекции показаний величины тока служит масштабирующий усилитель, собранный на одном из операционных усилителей микросхемы DA1 – DA1.2. Регулировка коэффициента передачи этого усилителя осуществляется с помощью резистора R3 величиной 33к. Лучше, если оба подстроечных резистора будут многооборотными. Таким образом, при использование для оцифровки напряжения величиной ровно +5 В, прямое подключение сигналов на входы микроконтроллера запрещено. Оставшийся ОУ, включенный между R5 и R7 и входом RA1, микросхемы DD1, является повторителем. Служит для уменьшения влияния на оцифровку шумов и импульсных помех, за счет стопроцентной, отрицательной, частотно независимой обратной связи. Для уменьшения шумов и помех при преобразовании величины тока, служит П образный фильтр, состоящий из С1,С2 и R4. В большинстве случаев С2 можно не устанавливать.

    В качестве датчика тока, резистор R2, используется отечественный заводской шунт на 20А – 75ШСУ3-20-0,5. При токе, протекающем через шунт в 20А, на нем упадет напряжение величиной 0,075 В (по паспорту на шунт). Значит, для того, чтобы на входе контроллера было два вольта, коэффициент усиления усилителя должен быть примерно 2В/0,075 = 26. Примерно — это потому, что у нас дискретность оцифровки не 0,01 В, а 0,09765625 В. Конечно, можно применить и самодельные шунты, откорректировав коэффициент усиления усилителя DA1.2. Коэффициент усиления данного усилителя равен отношению величин резисторов R1 и R3, Кус = R3/R1.
    И так, исходя из выше сказанного, вольтметр имеет верхний предел – 50 вольт, а амперметр – 20 ампер, хотя при шунте, рассчитанном на 50 ампер, он будет измерять 50А. Так, что его можно с успехом установить в других устройствах.
    Теперь о доработке, включающей в себя добавление индикаторного светодиода. В программу были внесены небольшие изменения и теперь, пока контроллер работает, светодиод моргает с частотой примерно 2 Гц. Время свечения светодиода выбрано 25мсек, для экономии. Можно было бы вывести на дисплей моргающий курсор, но сказали, что со светодиодом нагляднее и эффектнее. Вроде все. Успехов. К.В.Ю.


    .

    Один из вариантов готового устройства, реализованного Алексеем. К сожалению фамилии не знаю. Спасибо ему за работу и фото.

    Сегодня расскажу как сделать универсальный несложный измерительный прибор с возможностью измерения напряжения, тока, потребляемой мощности и ампер-часов на дешёвом микроконтроллере PIC16F676 по следующей схеме.

    Схема принципиальная вольтамперваттметра

    Печатная плата на DIP деталях получилась 45х50 мм. Также в архиве есть печатная плата для SMD деталей.

    Для микроконтроллера PIC16F676 имеются две прошивки : в первой - возможность измерения напряжения, тока и мощности - vapDC.hex , а во второй - тоже, что и в первой, только добавлена возможность измерения ампер/часов (не всегда нужна) - vapcDC.hex .

    Резистор, обозначенный серым на печатной плате, подключается в зависимости от индикатора: если используем индикатор с общими катодами, то резистор (1К), идущий от 11-ой ноги МК, подключается к +5, а если индикатор с общим анодом, то резистор подключаем к общему проводу.

    В моём случае индикатор и общим катодом, резистор расположил под платой, от 11-ой ноги МК к +5.

    Кратковременное нажатие кнопки "В " активизирует индикацию режима работы: напряжение «-U-», ток «-I-», мощность «-P-», счетчик ампер/часов «-C-». Некоторые экземпляры ОУ LM358 имеют положительное смещение на выходе, его можно компенсировать цифровой коррекцией измерителя. Для этого необходимо перейти в режим измерения тока, «-I-». Удерживать 7-8 сек кнопку "Н " до появления на индикаторе надписи «-S.-». Затем кнопками «В » и «Н » корректируем смещение «0». Если кнопки нажаты, на индикаторе непосредственно константа, отжаты - откорректированные показания тока. Выход из режима - одновременное нажатие клавиш "В " и "Н ". Результат - индикация «-3-», то есть запись в энергонезависимую память. Счетчик ампер/часов обнуляется удержанием кнопки "Н " 3-4 сек.

    В своём случае ставлю только кнопку "В ", для переключения режима работы. Кнопку "Н " не ставлю, так как коррекция тока не требуется, если ОУ LM358 новый, то он практически не имеет смещения, а если и имеет, то незначительное. Сегментный индикатор ставлю не отдельной плате, которую можно легко прикрепить к корпусу устройства, например, встроить в переделанный БП ATX .

    К собранному устройству подключаем питание, подаём измеряемое напряжение и ток, корректируя подстроечными резисторами показания вольтметра и амперметра по показаниями мультиметра.

    В итоге вся конструкция вольтамперватметра обошлась в 150 рублей, без фольгированного стеклотекстолита. С вами был Пономарёв Артём (stalker68 ), до новых встреч на страницах сайта Радиосхемы !

    Обсудить статью ВОЛЬТАМПЕРВАТТМЕТР