Войти
Портал об устройстве канализации и водосточных труб
  • Установление точной концентрации раствора соли Мора
  • Первый российский историк
  • Можно ли печень ребенку: куриную или свиную, и когда?
  • Рецепты творожных кексов для детей
  • Детские кексы: варианты рецептов с фото, особенности приготовления
  • Брауни в мультиварке на пару
  • Импульсный металлоискатель своими руками. Глубинный металлодетектор своими руками: схема, инструкция и отзывы Какой лучший балансный или импульсный металлоискатель

    Импульсный металлоискатель своими руками. Глубинный металлодетектор своими руками: схема, инструкция и отзывы Какой лучший балансный или импульсный металлоискатель

    Андрей Щедрин
    г. Москва

    Юрий Колоколов
    г. Донецк

    Предлагаемый вашему вниманию импульсный металлоискатель является совместной разработкой Юрия Колоколова и Андрея Щедрина. Прибор предназначен для любительского поиска кладов и реликвий, поиска на пляже и т.д. После публикации первой версии металлоискателя в , этот прибор получил высокую оценку среди любителей, повторивших конструкцию. Вместе с тем были высказаны полезные замечания и пожелания, которые мы учли в новой версии прибора.

    В настоящее время металлоискатель серийно выпускается московской фирмой МАСТЕР КИТ в виде наборов "сделай сам" для радиолюбителей под обозначением NM8042 (в настоящее время выпускается обновленная версия металлоискателя в виде готового микропроцессорного модуля). Набор содержит печатную плату, пластиковый корпус и электронные компоненты, включая уже запрограммированный контроллер. Возможно, для многих любителей приобретение такого набора и последующая его несложная сборка окажутся удобной альтернативой приобретению дорогого промышленного прибора или полностью самостоятельному изготовлению металлоискателя.

    Принцип действия импульсного или вихретокового металлоискателя основан на возбуждении в металлическом объекте импульсных вихревых токов и измерении вторичного электромагнитного поля, которое наводят эти токи. В этом случае возбуждающий сигнал подается в передающую катушку датчика не постоянно, а периодически в виде импульсов. В проводящих объектах наводятся затухающие вихревые токи, которые возбуждают затухающее электромагнитное поле. Это поле, в свою очередь, наводит в приемной катушке датчика затухающий ток. В зависимости от проводящих свойств и размера объекта, сигнал меняет свою форму и длительность. На рис.1. Схематично показан сигнал на приемной катушке импульсного металлоискателя. Осциллограмма 1 – сигнал в отсутствии металлических мишеней, осциллограмма 2 – сигнал при нахождении датчика вблизи металлического объекта.

    Импульсные металлоискатели имеют свои достоинства и недостатки. К достоинствам относится малая чувствительность к минерализованному грунту и соленой воде, к недостаткам - плохая селективность по типу металла и сравнительно большое потребление энергии.

    Рис.1. Сигнал на входе импульсного металлоискателя.

    Большинство практических конструкций импульсных металлоискателей строятся либо по двухкатушечной схеме, либо по однокатушечной схеме с дополнительным источником питания. В первом случае прибор имеет раздельные приемную и излучающую катушки, что усложняет конструкцию датчика. Во втором случае катушка в датчике одна, а для усиления полезного сигнала используется усилитель, который питается от дополнительного источника питания. Смысл такого построения заключается в следующем – сигнал самоиндукции имеет более высокий потенциал, чем потенциал источника питания, который используется для подачи тока в передающую катушку. Поэтому для усиления такого сигнала усилитель должен иметь собственный источник питания, потенциал которого должно быть выше напряжения усиливаемого сигнала. Это также усложняет схему прибора.

    Предлагаемая однокатушечная конструкция построена по оригинальной схеме, которая лишена приведенных выше недостатков.

    Технические характеристики

    • Напряжение питания: 7,5 – 14 (В)
    • Потребляемый ток не более: 90 (мА)
    • Глубина обнаружения:

    Монета диаметром 25 мм - 20 (см)
    - пистолет - 40 (см)
    - каска - 60 (см)

    Структурная схема металлоискателя изображена на рис.2. Основой устройства является микроконтроллер. С его помощью осуществляется формирование временных интервалов для управления всеми узлами устройства, а также индикация и общее управление прибором. С помощью мощного ключа производится импульсное накопление энергии в катушке датчика, а затем прерывание тока, после которого возникает импульс самоиндукции, возбуждающий электромагнитное поле в мишени.

    Рис.2. Структурная схема импульсного металлоискателя.

    Изюминкой предлагаемой схемы является применение дифференциального усилителя во входном каскаде. Он служит для усиления сигнала, напряжение которого выше напряжения питания и привязке его к определенному потенциалу - + 5 (В). Для дальнейшего усиления служит приемный усилитель с большим коэффициентом усиления. Для измерения полезного сигнала служит первый интегратор. Во время прямого интегрирования производится накопление полезного сигнала в виде напряжения, а во время обратного интегрирования производится преобразование результата в длительность импульса. Второй интегратор имеет большую постоянную интегрирования и служит для балансировки усилительного тракта по постоянному току.

    Рис.3. Принципиальная электрическая схема простого импульсного металлоискателя

    Предложенная конструкция прибора разработана полностью на импортной элементной базе. Использованы самые распространенные компоненты ведущих производителей. Некоторые элементы можно попытаться заменить на отечественные, об этом будет сказано ниже. Большинство примененных элементов не являются дефицитными и могут быть приобретены в больших городах России и СНГ через фирмы, торгующие электронными компонентами.

    Дифференциальный усилитель собран на ОУ D1.1. Микросхема D1 представляет собой счетверенный операционный усилитель типа TL074. Его отличительными свойствами являются высокое быстродействие, малое потребление, низкий уровень шумов, высокое входное сопротивление, а также возможность работы при напряжениях на входах, близких к напряжению питания. Эти свойства и обусловили его применение в дифференциальном усилителе в частности и в схеме в целом. Коэффициент усиления дифференциального усилителя составляет около 7 и определяется номиналами резисторов R3, R6…R9, R11.

    Приемный усилитель D1.2 представляет собой неинвертирующий усилитель с коэффициентом усиления 57. Во время действия высоковольтной части импульса самоиндукции этот коэффициент снижается до 1 с помощью аналогового ключа D2.1. Это предотвращает перегрузку входного усилительного тракта и обеспечивает быстрое вхождение в режим для усиления слабого сигнала. Транзисторы VT3 и VT4 предназначены для согласования уровней управляющих сигналов, подаваемых с микроконтроллера на аналоговые ключи.

    С помощью второго интегратора D1.3 производится автоматическая балансировка входного усилительного тракта по постоянному току. Постоянная интегрирования 240 (мс) выбрана достаточно большой, чтобы эта обратная связь не влияла на усиление быстро изменяющегося полезного сигнала. С помощью этого интегратора на выходе усилителя D1.2 при отсутствии сигнала поддерживается уровень +5 (В).

    Измерительный первый интегратор выполнен на D1.4. На время интегрирования полезного сигнала открывается ключ D2.2 и, соответственно, закрывается ключ D2.4. На ключе D2.3 реализован логический инвертор. После завершения интегрирования сигнала ключ D2.2 закрывается и открывается ключ D2.4. Накопительный конденсатор C6 начинает разряжаться через резистор R21. Время разряда будет пропорционально напряжению, которое установилось на конденсаторе C6 к концу интегрирования полезного сигнала. Это время измеряется с помощью микроконтроллера , который осуществляет аналого-цифровое преобразование. Для измерения времени разряда конденсатора C6 используются аналоговый компаратор и таймеры, которые встроены в микроконтроллер D3.

    Кнопка S1 предназначена для начального сброса микроконтроллера. С помощью переключателя S3 задается режим индикации устройства. С помощью переменного резистора R29 регулируется чувствительность металлоискателя.

    С помощью светодиодов VD3…VD8 производится световая индикация .

    Алгоритм функционирования

    Для разъяснения принципа работы описываемого импульсного металлоискателя на рис.4 приведены осциллограммы сигналов в наиболее важных точках прибора.

    Рис.4. Осциллограммы.

    На время интервала A открывается ключ VT1. Через катушку датчика начинает протекать пилообразный ток – осциллограмма 2. При достижении величины тока около 2(А) ключ закрывается. На стоке транзистора VT1 возникает выброс напряжения самоиндукции – осциллограмма 1. Величина этого выброса - более 300 Вольт (!) и ограничивается резисторами R1, R3. Для предотвращения перегрузки усилительного тракта служат ограничительные диоды VD1, VD2. Также для этой цели на время интервала A (накопление энергии в катушке) и интервала B (выброс самоиндукции) открывается ключ D2.1. Это снижает сквозной коэффициент усиления тракта с 400 до 7. На осциллограмме 3 показан сигнал на выходе усилительного тракта (вывод 8 D1.2). Начиная с интервала C, ключ D2.1 закрывается и коэффициент усиления тракта становится большим. После завершения защитного интервала C, за время которого усилительный тракт входит в режим, открывается ключ D2.2 и закрывается ключ D2.4 – начинается интегрирование полезного сигнала – интервал D. По истечении этого интервала ключ D2.2 закрывается, а ключ D2.4 открывается – начинается “обратное” интегрирование. За это время (интервалы E и F) конденсатор C6 полностью разряжается. С помощью встроенного аналогового компаратора микроконтроллер отмеряет величину интервала E, которая оказывается пропорциональной уровню входного полезного сигнала. Для текущих версий микропрограммного обеспечения установлены следующие значения интервалов:

    A – 60…200 мкс, B – 12 мкс, С – 8 мкс, D – 50 (мкс), A + B + C + D + E + F – 5 (мс) - период повторения.

    Микроконтроллер обрабатывает полученные цифровые данные и индицирует с помощью светодиодов VD3…VD8 и излучателя звука Y1 степень воздействия мишени на датчик. Светодиодная индикация представляет собой аналог стрелочного индикатора – при отсутствии мишени горит светодиод VD8, далее в зависимости от уровня воздействия последовательно загораются VD7, VD6 и т.д.

    Рис.5. Принципиальная схема второй усовершенствованной версии микропроцессорного импульсного металлоискателя

    Отличия (рис.5) от первой версии прибора (рис.3) состоят в следующем:

    1. Добавлен резистор R30. Это сделано для того, чтобы снизить влияние внутреннего сопротивления различных батарей на настройку прибора. Теперь можно безболезненно менять кислотный аккумулятор на 6-8шт солевых батарей. Настройка прибора при этом не "съедет".

    2. Добавлены "ускоряющие" конденсаторы C15,C16,C17. Благодаря этому существенно улучшилась термостабильность схемы. В старой схеме ключи VT2...VT4 были самым уязвимым местом в этом плане. Плюс к этому в программу добавлена непрерывная автобалансировка нуля.

    3. Добавлена цепь R31 , R32, C14 . Эта цепь позволяет непрерывно контролировать состояние аккумуляторной батареи. С помощью резистора R32 теперь можно выставить любой порог безопасной(для аккумулятора) разрядки аккумуляторов различных типов. Например, для 8шт NiCd или NiMH аккумуляторных батарей типа АА нужно будет установить уровень 8 Вольт, а для 12 В кислотного аккумулятора - 11 Вольт... Когда будет достигнут пороговый уровень, будет включена световая и звуковая индикация.

    Настраивается этот режим просто. Прибор запитывается от блока питания. На блоке питания выставляется требуемое пороговое напряжение, движок резистора R32 сначала ставится в “верхнее” по схеме положение., а затем, вращая ротор резистора R32, нужно добиться срабатывания индикации – светодиод VD8 начнет мигать, источник звука будет издавать прерывистый сигнал. Из этого режима прибор выходит только по сбросу.

    4. В качестве альтернативного устройства индикации теперь можно использовать двухстрочный шестнадцатисимвольный ЖКИ. Этот режим включается при замыкании переключателя S3. В этом случае сигнальные выводы ЖКИ подключаются согласно схемы вместо светодиодов. Также на модуль ЖКИ необходимо подать напряжение +5 В и подключить “земляной” провод. Резистор R33 монтируется непосредственно на контактах модуля ЖКИ (рис.6).

    Рис.6. Альтернативный ЖКИ - индикатор.

    В этом случае в верхней строке всегда индицируется название металлоискателя, а в нижней строке в зависимости от режима: "Autotuning", "Low battery". В режиме поиска в этой строке рисуется столбец на 16 градаций уровня сигнала. При этом звуковой сигнал тоже имеет 16 градаций тона.

    Типы деталей и конструкция

    Вместо операционного усилителя D1 TL074N можно попробовать применить TL084N.

    Микросхема D2 - это счетверенный аналоговый ключ типа CD4066, который можно заменить на отечественную микросхему К561КТ3.

    Микроконтроллер D4 AT90S2313-10PI прямых аналогов не имеет. В схеме не предусмотрены цепи для его внутрисхемного программирования, поэтому контроллер желательно устанавливать на панельку, чтобы его можно было перепрограммировать.

    Транзистор VT1 типа IRF740 можно попробовать заменить на IRF840.

    Транзисторы VT2…VT4 типа 2N5551 можно заменить на КТ503 с любым буквенным индексом. Однако следует обратить внимание на тот факт, что они имеют другую цоколевку.

    Светодиоды могут быть любого типа, VD8 желательно взять другого цвета свечения. Диоды VD1,VD2 типа 1N4148.

    Резисторы могут быть любых типов, R1 и R3 должны иметь рассеиваемую мощность 0,5 (Вт), остальные могут быть 0,125 или 0,25 (Вт). R9 и R11 желательно подобрать, чтобы их сопротивление отличалось не более, чем на 5%.

    Конденсатор C1 – электролитический, на напряжение 16В, остальные конденсаторы керамические.

    Кнопка S1, переключатели S3,S4, переменный резистор R29 могут быть любых типов, которые подходят по габаритам. В качестве источника звука можно использовать пъезоизлучатель или головные телефоны от плеера.

    Конструкция корпуса прибора может быть произвольной. Штанга вблизи датчика (до 1 метра) и сам датчик не должны иметь металлических деталей и элементов крепления. В качестве исходного материала для изготовления штанги удобно использовать пластиковую телескопическую удочку.

    Датчик содержит 27 витков провода диаметром 0,6 - 0,8 мм, намотанного на оправке 190 (мм). Датчик не имеет экрана и его крепление к штанге должно осуществляться без применения массивных шурупов, болтов и т.д. (!) Для соединения датчика и электронного блока нельзя использовать экранированный кабель из-за его большой емкости. Для этих целей надо использовать два изолированных провода, например типа МГШВ, свитых вместе.

    Налаживание прибора

    ВНИМАНИЕ! В приборе имеется высокое, потенциально опасное для жизни напряжение – на коллекторе VT1 и на датчике. Поэтому при настройке и эксплуатации следует соблюдать меры электробезопасности.

    1. Убедиться в правильности монтажа.

    2. Подать питание и убедиться, что потребляемый ток не превышает 100 (мА).

    3. С помощью подстроечного резистора R7 добиться такой балансировки усилительного тракта, чтобы осциллограмма на выводе 7 D1.4 соответствовала осциллограмме 4 на рис.4. При этом необходимо следить за тем, чтобы сигнал в конце интервала D был неизменным, т.е. осциллограмма в этом месте должна быть горизонтальной.

    В дальнейшей настройке правильно собранный прибор не нуждается. Необходимо поднести датчик к металлическому объекту и убедиться в работе органов индикации. Описание работы органов управления приводится ниже, в описании программного обеспечения.

    Программное обеспечение

    На момент написания этой статьи было разработано и протестировано программное обеспечение версий V1.0-demo, V1.1 для первой версии прибора и V2.4-demo, V2.4 для второй версии. Демо-версия программы полностью работоспособна и отличается только отсутствием точной регулировки чувствительности. Полные версии поставляются в уже прошитых микроконтроллерах, входящих в состав набора МАСТЕР КИТ NM8042 . HEX файл прошивок V1.0-demo и V2.4-demo можно скачать .

    Работа над новыми версиями программного обеспечения продолжается, планируется введение дополнительных режимов. Новые версии, после их всестороннего тестирования, будут доступны в наборах МАСТЕР КИТ.

    Работа с прибором

    В начале работы необходимо включить питание прибора, поднять датчик на уровень 60-80 см от грунта и нажать на кнопку "Сброс". В течении 2-х секунд прибор произведет автонастройку. По окончании автонастройки прибор издаст характерный короткий звук. После этого датчик необходимо приблизить к грунту (в месте, где отсутствуют металлические предметы) на расстояние 3-7 см и отрегулировать чувствительность с помощью резистора R29. Ручку необходимо вращать до исчезновения ложных откликов. После этого можно приступать к поискам. При появлении индикации разряда батарей поиски необходимо прекратить, выключить прибор и заменить источник питания.

    Заключение

    Чтобы сэкономить время и избавить Вас от рутинной работы по поиску необходимых компонентов и изготовлению печатных плат МАСТЕР КИТ предлагает набор NM8042.

    На рис.7 приведен рисунок печатной платы (для схемы рис.3) и расположение компонентов на ней.

    Рис. 7.1. Вид печатной платы сверху.


    Рис.7.2. Вид печатной платы снизу.

    Набор состоит из заводской печатной платы, прошитого контроллера с версией программы V 1.1, всех необходимых компонентов, пластикового корпуса и инструкции по сборке и эксплуатации. Конструктивные упрощения были сделаны сознательно, с целью уменьшения стоимости набора.

    Изготовление поисковой катушки

    Катушка представляет собой 27 витков эмалированного провода сечением 0,7-0,8 мм, намотанных в виде кольца 180-190 мм. После намотки катушки витки необходимо обмотать изоляционной лентой. Для подключения датчика необходимо изготовить витую пару из монтажного провода. Для этого берется два куска провода нужной длины, и свиваются вместе из расчета одна скрутка на сантиметр. С одной стороны этот кабель подпаивается к катушке, с другой к плате. Корпус датчика и штанга металлоискателя не должны содержать металлических деталей!

    Доработка корпуса

    Перед установкой платы металлоискателя в корпус, в нем необходимо сделать отверстия под выносные элементы.

    На рис.8 показаны отверстия на передней панели под светодиоды, регулятор чувствительности R29, выключатель питания S4 и кнопку сброса S1. На рис.9 – отверстие на боковой поверхности корпуса под телефонный разъем Earphone JACK. На рис.10 – отверстия на задней панели под кабель питания и под кабель поисковой катушки.

    Внешний вид собранной электронной начинки показан на рис. 11.

    Рис.8. Отверстия на передней панели корпуса под светодиоды.

    Рис.9. Отверстие на боковой поверхности корпуса под телефонный разъем.


    Рис.10. Отверстия на задней панели под кабель питания и под кабель поисковой катушки.

    Рис.11. Внешний вид электронной начинки микропроцессорного импульсного металлоискателя из набора NM8042.

    Источники информации

    1. Щедрин А.И. Новые металлоискатели для поиска кладов и реликвий: -М.:”Горячая линия-Телеком”, 2003. -173с.

    Непрерывная работа с максимальными настройками глубины может помочь извлечь глубоко залегающие цели. В другом случае настраивать глубину нецелесообразно. Тестировать увеличение глубины обнаружения лучше всего в специально подготовленном для этого месте в поле или на собственном земельном участке.

    Вот 9 советов о том, как добиться максимальной производительности катушки металлоискателя по глубине.

    1. Чувствительность

    Настройка чувствительности - самый популярный способ увеличить глубину. Обычно, когда повышается чувствительность, увеличивается и глубина. Но имейте в виду, что есть и побочный эффект, поскольку слишком высоко взвинченная чувствительность может снизить вероятность идентификации цели, а также свести вас с ума постоянными хаотично издаваемыми звуками.

    2. Баланс грунта

    Каждый современный металлоискатель обычно имеет функцию баланса грунта. Правильно определить его и установить - это прямой путь к увеличению глубины. Ведь от минерализации почвы многое зависит, в том числе и то, на какой глубине вы будете обнаруживать цели.

    3. Проводите катушкой как можно ближе к земле

    Простой расчет: если вы сможете приблизить катушку к земле на 1,5 см, то и глубина обнаружения увеличится на те самые 1,5 см. Иногда этого бывает достаточно, чтобы поймать слабый сигнал от монеты. Иногда трава мешает перемещать катушку ближе к земле. В таком случае берите катушку побольше и потяжелее, ей проще смять растительность. Однако позаботьтесь о ее дополнительной защите.

    4. Снижение дискриминации

    Очень глубоко залегающие цели часто определяются металлоискателем неправильно. Но вы никогда не засечете эти многочисленные ложные срабатывания, если уровень дискриминации слишком высокий, например, как при программах «Монеты». Уменьшение дискрима до минимума может привести к успеху. Может быть, вы откопаете древний артефакт, а не очередной гвоздь.

    5. Устранение помех

    Очень много помех идет в цивилизованных местах, а также около линий электропередач и закопанных кабелей. Работающие электроприборы тоже достаточно сильно фонят. Обычно в таких случаях снижают чувствительность, а это уменьшает глубину. Поэтому лучше постарайтесь работать подальше от помех. Также выключите мобильник и уберите из карманов все металлические предметы. Не носите обувь с металлическим элементами. Не складывайте пели кабеля от катушки на саму катушку.

    6. Специальные настройки и девайсы

    Изучите инструкцию к своему металлоискателю вдоль и поперек. Ваш прибор может иметь некие уникальные параметры, которые могут помочь вам лучше слышать и видеть глубинные цели. Некоторые детекторы бывают специально созданы для того, чтобы усиливать глубокие, но слабые сигналы, например, в последнее время было некоторое оживление среди отечественных поисковиков по поводу глубинной прошивки металлоискателя АКА Signum MFT. Или также хороший результат дает использование глубинных насадок. XP выпустила такую недавно для Deus.

    7. Большая катушка

    Поисковые катушки больших размеров дают большую глубину обнаружения и более четкие показания от целей. Осторожно! Большая катушка может иметь большой вес. Поэтому к металлоискателю хорошо было бы приобрести специальную разгрузку, которая облегчает ношение прибора. Напомним, что большая катушка не может быть эффективной на сильно замусоренных железом участках и на высокоминерализованных почвах.

    8. Экспериментируйте со скоростью проводки

    К примеру, быстрое передвижение с Fisher F75 дает больше шансов на обнаружение глубоких целей, чем медленное. Опять же обращайтесь к руководству пользователя и неустанно проводите тесты - какая скорость передвижения для вашего металлоискателя дает более глубоко проникающий сигнал.

    9. Носите наушники

    Если вы используете обычный динамик металлоискателя, то вы вполне закономерно можете банально не различать сигналы от глубинных целей. В наушниках вы отвлекаетесь от внешних шумов и улавливаете быстрые, слабые сигналы. Если наушники вы использовать по каким-либо причинам вы не хотите, то попробуйте провести серию воздушных тестов и запомнить звуки для наиболее отдаленных целей. Иногда крошечные, незаметные изменения в аудио-тоне не отражаются на дисплее металлоискателя.

    Металлодетекторы глубинного типа способны обнаружить предметы в грунте на большом расстоянии. Современные модификации в магазинах стоят довольно дорого. Однако в данном случае можно попробовать изготовить металлодетектор своими руками. С этой целью в первую очередь рекомендуется ознакомиться с конструкцией стандартной модификации.

    Схема модификации

    Собирая металлодетектор своими руками (схема показана ниже), нужно помнить, что основными элементами устройства являются демпфер на микроконтроллере, конденсатор и ручка с держателем. Блок управления в устройствах состоит из набора резисторов. Некоторые модификации производятся на приводных модуляторах, которые работают при частоте 35 Гц. Непосредственно стойки выполнены с узкими и широкими пластинами тарельчатой формы.

    Инструкция по сборке простой модели

    Собрать металлодетектор своими руками довольно просто. В первую очередь рекомендуется заготовить трубку и приделать к ней ручку. Для установки потребуются резисторы высокой проводимости. Рабочая частота устройства зависит от многих факторов. Если рассматривать модификации на диодных конденсаторах, то у них высокая чувствительность.

    Рабочая частота таких металлоискателей составляет около 30 Гц. Максимальное расстояние обнаружения предмета у них равняется 25 мм. Работать модификации способны на батарейках литиевого типа. Микроконтроллеры для сборки потребуются с полярным фильтром. Многие модели складываются на датчиках открытого типа. Также стоит отметить, что эксперты не рекомендуют использовать фильтры высокой чувствительности. Они сильно снижают точность обнаружения металлических предметов.

    Модель серии "Пират"

    Сделать металлодетектор "Пират" своими руками можно только на базе проводного контроллера. Однако в первую очередь для сборки заготавливается микропроцессор. Для его подключения понадобится Многие эксперты рекомендуют применять сеточные конденсаторы с емкостью 5 пФ. Проводимость у них должна поддерживаться на уровне 45 мк. После можно приступать к пайке блока управления. Стойка должна быть прочной и выдерживать вес пластины. Для моделей на 4 В не рекомендуются применять тарелки диаметром более 5,5 см. Индикаторы системы не обязательно устанавливать. После закрепления блока останется лишь установить батарейки.

    Использование рефлекторных транзисторов

    Сделать с рефлекторными транзисторами металлодетектор своими руками довольно просто. В первую очередь эксперты рекомендуют заняться установкой микроконтроллера. Конденсаторы в данном случае подойдут трехканального типа, а проводимость у них не должна превышать 55 мк. При напряжении 5 В они обладают сопротивлением примерно 35 Ом. Резисторы у модификаций применяются в основном контактного типа. Они обладают отрицательной полярностью и хорошо справляются с электромагнитными колебаниями. Также стоит отметить, что при сборке разрешается использовать Максимальная ширина пластины для такой модификации равняется 5,5 см.

    Модель с конвекционными транзисторами: отзывы специалистов

    Собрать металлодетектор своими руками можно только на базе коллекторного контроллера. При этом конденсаторы используются на 30 мк. Если верить отзывам экспертов, то лучше не стоит применять мощные резисторы. В данном случае максимальная емкость элементов должна составлять 40 пФ. После установки контроллера стоит заняться блоком управления.

    Данные металлоискатели получают хорошие отзывы за надежную защиту от волновых помех. С этой целью используется два фильтра диодного типа. Модификации с системами индикации очень редко встречаются среди самодельных модификаций. Также стоит отметить, что блоки питания должны работать при низком напряжении. Таким образом, батарея долго прослужит.

    Использование хроматических резисторов

    Своими руками? Модель с хроматическими резисторами собрать довольно просто, но следует учитывать, что конденсаторы для модификаций разрешается применять лишь на предохранителях. Также эксперты указывают на несовместимость резисторов с проходными фильтрами. Перед началом сборки важно сразу заготовить для модели трубку, которая будет ручкой. Затем устанавливается блок. Целесообразнее подбирать модификации на 4 мк, которые работают при частоте 50 Гц. У них малый коэффициент рассевания и высокая точность измерения. Также стоит отметить, что искатели данного класса смогут успешно работать в условиях повышенной влажности.

    Модель с импульсным стабилитроном: сборка, отзывы

    Устройства с импульсными стабилитронами выделяются высокой проводимостью. Если верить отзывам специалистов, то самодельные модификации способны работать с предметами разного размера. Если говорить про параметры, то точность обнаружения у них равняется примерно 89 %. Начинать сборку устройства стоит с заготовки стойки. Затем монтируется ручка для модели.

    Следующим шагом устанавливается блок управления. Затем монтируется контроллер, который работает от литиевых батарей. После установки блока можно заняться пайкой конденсаторов. Отрицательное сопротивление у них не должно превышать 45 Ом. Отзывы экспертов указывают на то, что модификации данного типа можно производить без фильтров. Однако стоит учитывать, что у модели будут серьезные проблемы с волновыми помехами. При этом будет страдать конденсатор. В итоге батарея у моделей данного типа быстро разряжается.

    Применение низкочастотного трансивера

    Низкочастотные трансиверы у моделей значительно снижают точность работы приборов. Однако стоит отметить, что модификации данного типа способны успешно работать с предметами небольшого размера. При этом у них малый параметр саморазряда. Для того чтобы собрать модификацию своими руками, рекомендуется воспользоваться проводным контроллером. Передатчик чаще всего используется на диодах. Таким образом, проводимость обеспечивается на отметке в 45 мк при чувствительности 3 мВ.

    Некоторые эксперты рекомендуют устанавливать сеточные фильтры, которые повышают защищенность моделей. Для поднятия проводимости используются модули только переходного типа. Основными недостатками таких устройств считается перегорание контроллера. При такой поломке проблематично сделать ремонт металлодетектора своими руками.

    Использование высокочастотного трансивера

    На высокочастотных трансиверах собрать простой металлодетектор своими руками можно только на базе переходного контроллера. Перед началом установки стандартно заготавливается стойка под пластину. Проводимость контроллера в среднем равняется 40 мк. Многие специалисты не используют при сборке контактные фильтры. У них высокие тепловые потери, и они способы работать при частоте 50 Гц. Также стоит отметить, что для сборки металлоискателя используются литиевые батарейки, которые подзаряжают блок управления. Непосредственно датчик у модификаций устанавливается через конденсатор, у которого емкость не должна превышать 4 пФ.

    Модель с продольным резонатором

    На рынке часто встречаются устройства с продольными резонаторами. Они выделяются среди своих конкурентов высокой точностью определения предметов, и при этом могут работать при повышенной влажности. Для того чтобы самостоятельно собрать модель, заготавливается стойка, а тарелку стоит применять диаметром не менее 300 мм.

    Также стоит отметить, что для сборки устройства потребуется контактный котроллер, и один расширитель. Фильтры используются лишь на сеточной подкладке. Многие специалисты рекомендуют устанавливать диодные конденсаторы, которые работают при напряжении 14 В. В первую очередь они мало разряжают батарею. Также стоит отметить, что они обладают хорошей проводимостью по сравнению с полевыми аналогами.

    Использование селективных фильтров

    Сделать такой глубинный металлодетектор своими руками не просто. Основная проблема заключается в том, что в устройство нельзя установить обычный конденсатор. Также стоит отметить, что пластина для модификации подбирается размером от 25 см. В некоторых случаях стойки устанавливаются с расширителем. Многие эксперты советуют начинать сборку с установки блока управления. Он обязан работать при частоте не более 50 Гц. При этом проводимость зависит от контроллера, который используется в оборудовании.

    Довольно часто его подбирают с обкладкой для повышения защищенности модификации. Однако такие модели часто перегреваются, и не способны работать с высокой точностью. Для решения данной проблемы рекомендуется использовать обычные переходники, которые устанавливаются под конденсаторные блоки. Катушка для металлодетектора своими руками изготавливается из блока трансивера.

    Применение контакторов

    Контакторы в устройства устанавливаются вместе с блоками управления. Стойки для модификаций используются небольшой длины, а тарелки подбираются на 20 и 30 см. Некоторые эксперты говорят о том, что устройства стоит собирать на импульсных переходниках. При этом конденсаторы можно использовать низкой емкости.

    Также стоит отметить, что после установки блока управления стоит припаять фильтр, который способен работать при напряжении 15 В. В данном случае у модели будет поддерживаться проводимость на уровне 13 мк. Трансиверы чаще всего используются на переходниках. Перед включением металлоискателя на контакторе проверяется уровень отрицательного сопротивления. Указанный параметр в среднем равняется 45 Ом.

    Импульсные металлоискатели получили свое название от принципа своей работы: сначала он излучает импульс сигнала, потом молчит и принимает на ту же катушку сигнал от металлической цели, потом опять излучает импульс и т.д.

    Еще импульсные металлоискатели называют аналоговыми. Это связано с тем, что они ничего не обрабатывают, у них нет никаких встроенных программ для обработки сигнала, а сразу посылают сигнал от цели на динамик оператору.
    Они не имеют процессора в отличии от многих современных металлоискателей с экраном, выдающих на дисплей число VDI.

    Но не всякий аналоговый металлоискатель является импульсным. Прибор может работать и на других технологиях и быть аналоговым. Ниже представлен дисплей типичного представителя аналоговых металлоискателей - Golden Mask 4WD PRO .

    Достоинства и недостатки импульсных (аналоговых) металлоискателей.

    Достоинства:

    • быстрый отклик от цели
    • высокая глубина поиска
    • эффективная работа на тяжелых грунтах
      • хорошая работа на высоко минерализованных почвах
      • хорошая работа на соленых почвах
    Недостатки:
    • им сложно работать в условиях сильной замусоренности металлическими предметами
    • сильно подвержены влиянию электромагнитных помех
    Однако технологии не стоят на месте. И процессорные металлоискатели преодолевают свои недостатки и импульсные миноискатели нейтрализуют свои недостатки.

    Так цифровые металлоискатели увеличивают глубину поиска, могут работать на тяжелых грунтах.

    А аналоговые миноискатели становятся в состоянии работать в условиях большого количества металлического мусора.

    Тем не менее, по большому счету наши утверждения о достоинствах и недостатках аналоговых металлоискателей остаются верны.

    Справедливо мнение, что импульсные металлоискатели хороши на месте старых поселений, в сельской местности, на пляжах, но не в городских условиях.

    Принцип работы импульсного металлоискателя

    Импульсный металлоискатель имеет катушку с одной намоткой проволоки. Эта намотка и принимает и излучает сигнал.
    Сначала металлоискатель излучает сигнал, потом молчит и принимает наведенный сигнал от цели. (Как Вы, наверно, знаете электромагнитный импульс наводит электромагнитный сигнал в металлическом предмете, а при движении электромагнитного поля в проводнике возникает электрический ток и обратный импульс).

    Такие металлоискатели называют еще - PI -детекторами.

    Классический пример такого прибора - это импульсный глубинный металлоискатель Deep Hunter PRO-3 фирмы Golden Mask.

    Но вернемся к теме статьие - "Импульсные металлоискатели - принцип работы".

    Сигнал полученный от цели имеет изменение скорости затухания по сравнению с исходным сигналом. На этом основании и делается вывод, что под катушкой находится цель.

    На схеме внизу показана эта картина в точке - 10 (в ней находится цель). Видно изменение скорости затухания.

    Получаемый сигнал от цели увеличивается по мере приближения к ней катушки. Соответственно, если цель лежит глубоко, то будет слышен слабый сигнал.

    (У приборов цифровых сила сигнала должна превысить определенный порог, после чего процессор даст команду на звуковой сигнал о цели).

    Аналоговые металлоискатели могут иметь только линейную дискриминацию, т.е. Вы можете последовательно закрыть или открыть сегменты целей. (В профессиональных цифровых - это можно делать в произвольном порядке. За это отвечает процессор)

    Соответственно та же проблема и с аудио настройками. В импульсных приборах Вы можете менять высоту звука. Но звуков будет не больше 2-х: черный, цветной. Тональность их будет различна (Вы сами это подстраиваете), но о полифонии не может быть и речи. А в процессорных это бывает часто, и этим занимается процессор.
    Аналоговые приборы не имеют дисплея, а только имеют ручки и тумблеры регулировок. (нет процессора, который будет обрабатывать что-то и передавать на дисплей)

    Импульсники могут одночастотными или многочастотными, но в любом случае надо будет щелкать тумблер для перехода на новую частоту.

    Чем ниже частота в этих приборах, тем глубже они видят цель. Для слабо проводящих целей требуется высокая частота. (Собственно в цифровых приборах та же зависимость).

    Обычно импульсные металлоискатели работают на частотах ниже 30кГц.

    Характеристика и принцип работы импульсных металлоискателей

    Обновлено 07.10.2018

    Импульсный металлоискатель (Pulse metal detector или – англ.) самый чувствительный среди всех детекторов, реагирует на любые металлы, не отличает ферромагнетики от диамагнетиков. Поисковые особенности позволяют детектору обнаружить золото и золотые самородки в щелочных условиях и при экстремальной температуре грунта (или породы), которые слишком сложны для устройств VLF / TR . Он также позволяет обнаруживать металлические руды, содержащиеся в камнях и глине.

    Импульсные металлодетекторы незаменимы при поиске на прибрежной зоне, под водой и на высоко минерализованном грунте. Работа приборов не зависит от влияния земли и воды. Они одинаково успешно работают под водой и на суше. Поэтому технология PI используется в подводных металлоискателях . Приборы имеют хорошие результаты при поиске на песчаных и мокрых пляжах. Глубина обнаружения объектов в земле и соленой воде больше по сравнению с VLF металлоискателями.

    Импульсные металлоискатели лучше, чем VLF металлоискатели ведут себя вблизи линий электропередач, а также передающих антенн систем мобильной связи. Обслуживать этот тип металлоискателей довольно просто. Как правило, они оснащаются единственным регулятором чувствительности, хотя более продвинутые модели могут иметь и другие органы управления.

    Приборы имеют высокое энергопотребление, для работы нужны мощные аккумуляторы. Обычных батарей хватает не более чем на 12 часов непрерывной работы. Если используются щелочные батареи, то длительность работы увеличивается.

    Технология Pulse Induction не является универсальной, а недостатки импульсных металлоискателей ограничивают их возможности. В настоящее время лучшими металлоискателями для всех целей являются приборы использующие технологию VLF (очень низкие частоты). Однако технология PI может иметь дальнейшее развитие и в будущем могут быть разработаны новые детекторы с новыми возможностями.

    Устройство и принцип работы импульсных металлоискателей

    Импульсные металлоискатели имеют простую конструкцию. Прибор состоит из генератора импульсов, поисковой катушки , блока усиления сигнала, анализатора и блока индикации. Конструкция катушки также проста. Она является передающей и приемной одновременно. Это значительно уменьшает вес прибора.
    Поисковая катушка воздействует на грунт пульсирующим электромагнитным полем. Излучение импульсов происходит с частотой 50 …400 Гц и энергией около 100 Вт. Вследствие магнитной индукции на поверхности металлического объекта, находящегося в зоне действия поля возникают вихревые токи.

    Эти токи являются источником вторичного сигнала (отраженный импульс, отклик). В перерывах между импульсами, приёмник принимает отклик, который усиливается и обрабатывается анализатором и далее выводится на блок индикации.

    Время затухания отраженного импульса больше времени затухания излученного импульса (вследствие явления самоиндукции). Разница во времени является параметром для анализа и регистрации. Затухание вихревых токов от грунта или воды происходит намного быстрее и не улавливается прибором. Именно поэтому импульсные металлодетекторы эффективно работают под водой, на минерализованных, соленых и влажных грунтах.

    Related tags : импульсные металлоискатели, импульсные металлодетекторы, технология PI, Pulse Induction, принцип работы импульсных металлоискателей, устройство импульсных металлоискателей, как работает импульсный металлоискатель